With the rapid increase in devices that rely on wireless communication and data transfer, RF engineers face challenges far beyond analyzing the performance of a single antenna. Modern devices often incorporate multiple antennas, each operating within specific frequency bands. This complicates the RF engineer’s role, expanding their task from understanding the behavior of a single antenna to managing the interactions of multiple antennas on the same platform. The coupling effects between these antennas must be considered, particularly when RF engineers are integrating third-party antenna designs rather than creating them from scratch.

What advantages does Ansys HFSS offer for multi-antenna and large problem space design?

Ansys HFSS is a powerful tool that provides several advantages in tackling the challenges associated with multi-antenna systems. It features a robust parametric antenna design toolkit and a comprehensive component library. This allows antenna designers to either start from a unique design or use an approximate model for system integration and placement studies. Moreover, HFSS’s ability to create “Encrypted 3D Components” enables designers to incorporate high-fidelity models from third-party suppliers into platform simulations without revealing proprietary design information, ensuring accurate RF simulations.

How does HFSS handle the complexities of electrically large problem spaces?

One of the standout features of Ansys HFSS is its hybrid solve technology, which combines finite element (FEM), method of moments (MoM), and shooting and bouncing ray (SBR+) solution domains within a single simulation. This technology is particularly effective in solving electrically large problem spaces, such as those involving multiple antennas and platform integration. By leveraging this technology, RF engineers can efficiently simulate complex scenarios where multiple antennas interact with the placement platform, leading to more accurate and efficient design processes.

How do RF engineers mitigate crosstalk and spurious emissions in multi-antenna systems?

In multi-antenna systems, RF engineers must address issues like crosstalk and spurious emissions, which can occur due to the proximity of antennas on the same platform. Solutions may include optimizing antenna placement, applying tuned filters, adjusting radio channels, or modifying antenna architecture. Ansys HFSS allows engineers to calculate coupling coefficients between antennas with the platform in place, accurately accounting for the constructive and destructive field effects caused by the platform’s presence. These calculations are crucial for optimizing the overall system performance.

What role does Ansys EMIT play in optimizing multi-antenna systems?

Ansys EMIT is a powerful antenna system simulation tool that utilizes the coupling coefficients calculated by HFSS to predict the performance of multi-antenna systems. EMIT’s radio model library, along with feedline components such as filters, can be employed to optimize system performance and address Co-site Interference issues. By conducting these optimizations in a virtual environment, RF engineers can refine their designs before moving on to physical prototyping, saving time and reducing costs.

How do HFSS and EMIT contribute to cost-effective RF system design?

The combination of Ansys HFSS and EMIT provides RF engineers with a comprehensive suite of tools for developing and optimizing RF systems in a virtual space. This approach significantly reduces the need for physical prototyping, leading to faster development cycles and lower project costs. By leveraging the advanced capabilities of HFSS for antenna design and placement, along with EMIT’s system-level simulation and optimization tools, engineers can ensure that their RF systems perform optimally before committing to hardware, thus enhancing the overall efficiency and effectiveness of the design process.

 

Ready to Deepen Your Understanding? Join Our Three-Part Webinar Series!

In this series, we’ll cover:

Webinar 1: How Can You Design and Simulate Antennas Using Ansys HFSS?

Watch now

Webinar 2: How Do You Simulate Multi-Antenna Systems and Large Problem Spaces with Ansys HFSS?

Watch now

Webinar 3: How Can You Optimize Ansys HFSS Performance with High-Performance Computing (HPC)?

Watch now 

Author

  • Matt Duvall is DRD Technology's Chief Technologist and has been an invaluable part of the team since 2008. With a B.S., M.S., and Ph.D. in Mechanical Engineering from Oklahoma State University. Before joining DRD, he worked as a disc drive design engineer and as an R&D engineer in the medical device industry, gaining hands-on expertise in high-precision engineering environments. For the past 10 years, Matt has led DRD’s electrical engineering group, where he is recognized for his innovative approach and technical leadership.

    View all posts